日本新增新冠肺炎确诊病例29例 累计确诊2524例
来源:日本新增新冠肺炎确诊病例29例 累计确诊2524例发稿时间:2020-04-01 23:21:50


其中β是传播率(按照R0取值),Cij描述了:“年龄段j”的接触者“年龄段i”,κ= 1-exp(–1 / dL)是每日暴露的概率个体具有传染性(d为平均潜伏期),并且γ= 1–exp(–1 / dI)是当平均感染持续时间为dI时被感染个体恢复的每日概率。研究者还纳入了无症状和亚临床病例的贡献,1-ρi表示感染病例无症状或亚临床的可能性。研究者假设年轻的个体更有可能是无症状的(或亚临床的)和传染性较小的(与Ic,α相比,传染性的比例)。

值得注意的是,对于可能出现的二次高峰,此前3月25日的中欧抗疫视频会上,钟南山院士即表示:在全球疫情的背景下,为防止第二波高峰,仍应保持现有的防控措施,同时严格外防输入。当然,据央视新闻3月27日消息,他在接受央视记者采访时同样表示,“我估计国内疫情不会出现第二波高峰。在中国群防群控的基础上,新增病例可能就局限在很小的人群中。我不相信在我们这么强有力的措施下,会出现大的暴发。”

如果湖北武汉在4月初开始分批恢复工作,则最能保住此前增加物理距离的成果。由于该疾病具有更长的传染期,实行强力的隔离措施并在4月开始逐步解封,建模得出的感染的中位数到2020年中期能减少92%(IQR 66-97),到2020年底可减少24%(IQR 13-90),并降低了所有年龄段的人群发病率和发病高峰。这对减轻疫情暴发对医疗保健系统的压力有着重要的意义。 另外,R0值的不确定性对流行高峰的时间安排和暴发的最终规模有很大影响。

加入这些矩阵和武汉暴发的流行病学参数的最新估值后,研究者使用年龄结构的易感-暴露-感染-排除(SEIR)模型模拟了武汉在进行了物理疏离措施后(一系列包括关闭工作场所、减少普通社区中的人群汇聚)的疾病暴发持续轨迹。

研究者提供了200次模拟暴发的中位数累积发病率,每天的新报告病例和每天的特定年龄发病率。

研究者根据感染状况将人群分为易感性(S),暴露性(E),感染性(I)和排除(R)个体,并根据年龄分为5年范围,直至70岁,外加一个年龄段75岁及以上,总共分出16个年龄组。易感人群在接触传染性患者后,会以一个相对固定的速率被感染,随后康复或死亡。在整个传染病流行过程中,研究者假设武汉是一个封闭的系统,人口恒定为1100万(即S + E + I + R = 1100万)。研究者使用了图中所示的SEIR模型。

2019年12月,湖北武汉暴发了新冠疫情。此后,国家和地方层面采取了前所未有的措施应对疫情。2020年1月23日,武汉执行出行禁令,所有人未经授权不得出入武汉市。随后类似的控制措施扩展到了湖北全省。

对于第三种情况,研究者模拟了严格控制措施在3月或4月初结束的不同效果,并允许在学校关闭期间分阶段重返工作(即25%劳动力在第一周和第二周工作;第三,四周工作的劳动力恢复到50%;此后100%劳动力恢复工作和上学。

严格的控制措施,如长期停课和放假,可减少到2020年底的累计感染率和发病率高峰,同时也推迟了疫情的暴发高峰。研究者的模型表明,这些增加物理距离的策略效果随年龄段的不同而不同。发病率的下降在小学生和老年人中最显著,而在工作年龄的成年人中最不显著。

对于给定的年龄段i,可以通过以下公式描述流行病转变: